全部版块 我的主页
论坛 经济学人 二区 外文文献专区
256 0
2022-03-03
摘要翻译:
我们提出了一个钢琴演奏中音频到乐谱对齐的框架,该框架采用了使用神经网络的自动音乐转录(AMT)。尽管AMT结果可能包含一些误差,但音符预测输出可以被视为一种学习的特征表示,可以直接与MIDI音符或色度表示相媲美。为此,我们使用了两个递归神经网络作为基于AMT的特征提取器来对齐算法。一种方法预测帧级中88个音符或12个色度的存在,另一种方法检测12个色度中的音符开始。我们将这两种学习到的特征结合起来进行音频到分数的对齐。为了具有可比性,我们将动态时间规整作为一种对齐算法,而不需要任何额外的后处理。我们在MAPS数据集上评估了所提出的框架,并将其与以前的工作进行了比较。实验结果表明,基于学习特征的比对框架显著提高了比对的精度,平均起始误差小于10 ms。
---
英文标题:
《Audio-to-score alignment of piano music using RNN-based automatic music
  transcription》
---
作者:
Taegyun Kwon, Dasaem Jeong, Juhan Nam
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  We propose a framework for audio-to-score alignment on piano performance that employs automatic music transcription (AMT) using neural networks. Even though the AMT result may contain some errors, the note prediction output can be regarded as a learned feature representation that is directly comparable to MIDI note or chroma representation. To this end, we employ two recurrent neural networks that work as the AMT-based feature extractors to the alignment algorithm. One predicts the presence of 88 notes or 12 chroma in frame-level and the other detects note onsets in 12 chroma. We combine the two types of learned features for the audio-to-score alignment. For comparability, we apply dynamic time warping as an alignment algorithm without any additional post-processing. We evaluate the proposed framework on the MAPS dataset and compare it to previous work. The result shows that the alignment framework with the learned features significantly improves the accuracy, achieving less than 10 ms in mean onset error.
---
PDF链接:
https://arxiv.org/pdf/1711.0448
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群