摘要翻译:
在射影平面以外的曲面上,很少有曲线的阻塞方程族的例子是已知的。结合Westenberger和Hirano的结果和Math.AG/9802009中的一个思想,本文给出了射影三空间中曲面上具有简单奇点的不可约曲线族的一系列例子,它们不是t-光滑的,即不具有期望维数,并与保证t-光滑分量存在的条件(示出相同的渐近性)进行了比较。
---
英文标题:
《Some obstructed equisingular families of curves on surfaces in
projective three-space》
---
作者:
Thomas Markwig
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Very few examples of obstructed equsingular families of curves on surfaces other than the projective plane are known. Combining results from Westenberger and Hirano with an idea from math.AG/9802009 we give in the present paper series of examples of families of irreducible curves with simple singularities on surfaces in projective three-space which are not T--smooth, i.e. do not have the expected dimension, and we compare this with conditions (showing the same asymptotics) which ensure the existence of a T--smooth component.
---
PDF链接:
https://arxiv.org/pdf/0706.2441