摘要翻译:
二十多年前,一场“相当大的革命”压倒性地取代了自然语言处理(NLP)中基于知识的方法,被定量(如统计、基于语料库、
机器学习)方法所取代。尽管我们坚信纯定量方法不能成为NLP的唯一范式,但对纯工程方法构建NLP的大型知识库的不满是有道理的。在本文中,我们希望证明这两种趋势在一定程度上是错误的,是时候用一种反映我们对世界的常识性看法和我们用普通语言谈论的方式的本体论结构来丰富逻辑语义学了。本文将证明,假设这样一个本体论结构,自然语言语义学中的许多挑战(如转喻、强化、缩写、名词性复合词等)可以得到适当和统一的解决。
---
英文标题:
《Commonsense Knowledge, Ontology and Ordinary Language》
---
作者:
Walid S. Saba
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
---
英文摘要:
Over two decades ago a "quite revolution" overwhelmingly replaced knowledgebased approaches in natural language processing (NLP) by quantitative (e.g., statistical, corpus-based, machine learning) methods. Although it is our firm belief that purely quantitative approaches cannot be the only paradigm for NLP, dissatisfaction with purely engineering approaches to the construction of large knowledge bases for NLP are somewhat justified. In this paper we hope to demonstrate that both trends are partly misguided and that the time has come to enrich logical semantics with an ontological structure that reflects our commonsense view of the world and the way we talk about in ordinary language. In this paper it will be demonstrated that assuming such an ontological structure a number of challenges in the semantics of natural language (e.g., metonymy, intensionality, copredication, nominal compounds, etc.) can be properly and uniformly addressed.
---
PDF链接:
https://arxiv.org/pdf/0808.1211