摘要翻译:
主动风噪声检测和抑制技术是智能眼镜增强ASR功能的一个新的重要范例,此外,在更广泛的物联网(Internet of things)中,还有其他可穿戴设备和智能设备。在本文中,我们开发了两个独立的算法,分别用于风噪声检测和抑制,在一个具有挑战性的低能量环境下工作。这些算法共同组成了一个鲁棒的风噪声抑制系统。在第一种情况下,我们提出了一种实时风检测算法(RTWD),该算法利用两组不同的低维信号特征来高精度地识别风噪声的存在。为了抑制风噪声,我们采用了一种额外的算法--注意力神经风抑制(ANWS),该算法利用
神经网络从受风噪声影响最严重的频谱区域的风损坏音频中重建佩戴者的语音信号。最后,我们使用低功耗、多麦克风设备和风模拟器,在具有挑战性的检测标准和各种风力强度下进行了实时实验,验证了我们的算法。
---
英文标题:
《Real-Time Wind Noise Detection and Suppression with Neural-Based Signal
Reconstruction for Mult-Channel, Low-Power Devices》
---
作者:
Anthony D. Rhodes
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Active wind noise detection and suppression techniques are a new and essential paradigm for enhancing ASR-based functionality with smart glasses, in addition to other wearable and smart devices in the broader IoT (Internet of things). In this paper, we develop two separate algorithms for wind noise detection and suppression, respectively, operational in a challenging, low-energy regime. Together, these algorithms comprise a robust wind noise suppression system. In the first case, we advance a real-time wind detection algorithm (RTWD) that uses two distinct sets of low-dimensional signal features to discriminate the presence of wind noise with high accuracy. For wind noise suppression, we employ an additional algorithm - attentive neural wind suppression (ANWS) - that utilizes a neural network to reconstruct the wearer speech signal from wind-corrupted audio in the spectral regions that are most adversely affected by wind noise. Finally, we test our algorithms through real-time experiments using low-power, multi-microphone devices with a wind simulator under challenging detection criteria and a variety of wind intensities.
---
PDF链接:
https://arxiv.org/pdf/1710.00082