摘要翻译:
本文提出了一个求解多目标生产调度问题的优化系统(MOOPPS)。通过一组实现的元启发式,可以识别帕累托最优方案或至少是它们的近似方案。由于整个软件是完全菜单驱动的,决策者可以很容易地调整必要的控制参数。这允许对所考虑的问题实例进行不同的元启发式算法的比较。结果通过图形用户界面可视化,显示结果空间中解的分布以及相应的甘特图表示。基于吸气交互方法(AIM)的模块支持从有效解决方案集合中识别最优选解决方案。决策者连续地定义期望水平,直到选择一个单一的解决方案。在瑞典Ronneby成功参加决赛后,MOOPPS软件被授予2002年欧洲学术软件奖(http://www.bth.se/llab/easa_2002.nsf)
---
英文标题:
《MOOPPS: An Optimization System for Multi Objective Scheduling》
---
作者:
Martin Josef Geiger
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Human-Computer Interaction 人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--
---
英文摘要:
In the current paper, we present an optimization system solving multi objective production scheduling problems (MOOPPS). The identification of Pareto optimal alternatives or at least a close approximation of them is possible by a set of implemented metaheuristics. Necessary control parameters can easily be adjusted by the decision maker as the whole software is fully menu driven. This allows the comparison of different metaheuristic algorithms for the considered problem instances. Results are visualized by a graphical user interface showing the distribution of solutions in outcome space as well as their corresponding Gantt chart representation. The identification of a most preferred solution from the set of efficient solutions is supported by a module based on the aspiration interactive method (AIM). The decision maker successively defines aspiration levels until a single solution is chosen. After successfully competing in the finals in Ronneby, Sweden, the MOOPPS software has been awarded the European Academic Software Award 2002 (http://www.bth.se/llab/easa_2002.nsf)
---
PDF链接:
https://arxiv.org/pdf/0809.0961