摘要翻译:
本文讨论了实半代数集的对数极限集,更一般地,讨论了可定义为O-极小多项式有界结构的集的对数极限集。证明了复代数集的对数极限集的大部分性质在实情况下成立。这包括多面体结构和与非阿基米德场理论的关系,热带几何学和马斯洛夫去量子化。
---
英文标题:
《Logarithmic limit sets of real semi-algebraic sets》
---
作者:
Daniele Alessandrini
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This paper is about the logarithmic limit sets of real semi-algebraic sets, and, more generally, about the logarithmic limit sets of sets definable in an o-minimal, polynomially bounded structure. We prove that most of the properties of the logarithmic limit sets of complex algebraic sets hold in the real case. This include the polyhedral structure and the relation with the theory of non-archimedean fields, tropical geometry and Maslov dequantization.
---
PDF链接:
https://arxiv.org/pdf/0707.0845