全部版块 我的主页
论坛 经济学人 二区 外文文献专区
259 0
2022-03-03
摘要翻译:
Slepian函数为联合时频定位优化问题提供了一种解决方案。在这里,通过使用一个广义优化准则来扩展这个概念,该准则有利于能量集中在一个区间,而不利于能量集中在另一个区间,导致了“增广的”Slepian函数。为了说明这些广义Slepian函数所显示的最有趣的性质,我们给出了数学基础和实例。本文还讨论了这种新的能量集中判据的相关性以及它的一些应用。
---
英文标题:
《Augmented Slepians: Bandlimited Functions that Counterbalance Energy in
  Selected Intervals》
---
作者:
Robin Demesmaeker, Maria Giulia Preti, Dimitri Van De Ville
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Slepian functions provide a solution to the optimization problem of joint time-frequency localization. Here, this concept is extended by using a generalized optimization criterion that favors energy concentration in one interval while penalizing energy in another interval, leading to the "augmented" Slepian functions. Mathematical foundations together with examples are presented in order to illustrate the most interesting properties that these generalized Slepian functions show. Also the relevance of this novel energy-concentration criterion is discussed along with some of its applications.
---
PDF链接:
https://arxiv.org/pdf/1710.11251
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群