全部版块 我的主页
论坛 经济学人 二区 外文文献专区
258 0
2022-03-04
摘要翻译:
在这篇注记中,我们发展了多射影空间中点的分隔符的一些性质。特别地,我们证明了Geramita、Maroscia和Roberts的结果的多重分次类比,这些结果将X和X{P}的Hilbert函数通过分离子的次联系起来,Abrescia、Bazzotti和Marino的结果将分离子的次联系到点的理想的最小多重分次自由分辨率的位移。
---
英文标题:
《Separators of points in a multiprojective space》
---
作者:
Elena Guardo and Adam Van Tuyl
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this note we develop some of the properties of separators of points in a multiprojective space. In particular, we prove multigraded analogs of results of Geramita, Maroscia, and Roberts relating the Hilbert function of X and X \{P} via the degree of a separator, and Abrescia, Bazzotti, and Marino relating the degree of a separator to shifts in the minimal multigraded free resolution of the ideal of points.
---
PDF链接:
https://arxiv.org/pdf/0707.3139
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群