摘要翻译:
设$x$是正特征代数闭域$k$上的光滑簇,${\rm D}_x$是pd-微分算子的簇,${\bar D}_x$是它的中心约简,是小微分算子的簇。本文证明了如果$X$是一个线-超平面关联簇($(1,n,n+1)$类型的部分标志簇)或任意维数的二次曲面(在这种情况下,特征为奇数),则${\rm H}^{i}(X,{\bar D}_X)=0$,对于$i>0$。利用这个消失的结果和导出的晶体微分算子局部化定理(\cite{BMR}),我们证明了结构束的Frobenius推进是这些变体上的一个倾斜丛,条件是相应群的Coxeter数$P>H$。
---
英文标题:
《A vanishing theorem for sheaves of small differential operators in
positive characteristic》
---
作者:
Alexander Samokhin
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
Let $X$ be a smooth variety over an algebraically closed field $k$ of positive characteristic, ${\rm D}_X$ the sheaf of PD-differential operators, and ${\bar D}_X$ its central reduction, the sheaf of small differential operators. In this paper we show that if $X$ is a line-hyperplane incidence variety (a partial flag variety of type $(1,n,n+1)$) or a quadric of arbitrary dimension (in this case the characteristic is supposed to be odd) then ${\rm H}^{i}(X,{\bar D}_X)=0$ for $i>0$. Using this vanishing result and the derived localization theorem for crystalline differential operators (\cite{BMR}) we show that the Frobenius pushforward of the structure sheaf is a tilting bundle on these varieties, provided that $p>h$, the Coxeter number of the corresponding group.
---
PDF链接:
https://arxiv.org/pdf/0707.0913