摘要翻译:
我们证明了在离散时间和连续时间情形下,博弈(以色列)期权的二项式逼近的缺口风险收敛于相应的Black-Scholes市场中的缺口风险,该市场考虑了Lipschitz连续路径相关的收益。这些结果对于通常的美式选择也是新的。本文继续并扩展了Kifer[Ann.appl.probab.16(2006)984-1033]的研究,得到了博弈期权价格的二项式近似估计。我们的论点特别依赖于通过Skorokhod嵌入的强不变性原理类型逼近、Kifer[Ann.appl.probab.16(2006)984-1033]的估计以及Dolinsky和Kifer[Stochastics79(2007)169-195]建立的离散时间内最优缺口套期保值的存在性。
---
英文标题:
《Binomial approximations of shortfall risk for game options》
---
作者:
Yan Dolinsky, Yuri Kifer
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We show that the shortfall risk of binomial approximations of game (Israeli) options converges to the shortfall risk in the corresponding Black--Scholes market considering Lipschitz continuous path-dependent payoffs for both discrete- and continuous-time cases. These results are new also for usual American style options. The paper continues and extends the study of Kifer [Ann. Appl. Probab. 16 (2006) 984--1033] where estimates for binomial approximations of prices of game options were obtained. Our arguments rely, in particular, on strong invariance principle type approximations via the Skorokhod embedding, estimates from Kifer [Ann. Appl. Probab. 16 (2006) 984--1033] and the existence of optimal shortfall hedging in the discrete time established by Dolinsky and Kifer [Stochastics 79 (2007) 169--195].
---
PDF链接:
https://arxiv.org/pdf/0811.1896