摘要翻译:
本文分析和表征了镜面和漫射元件的表面散射过程。在60GHz的中心频率下,研究了各种具有不同粗糙度的建筑材料。当用户移动很短的距离时,在一阶散射分量中观察到非常大的信号强度变化。这是由于粗糙表面散射体引起的小尺度褪色。此外,本文还研究了材料的漫射散射与材料的粗糙度、入射角和与表面的距离有关。最后,结果表明,粗糙材料的反射可能会受到高去极化的影响,这一现象可以利用偏振分集来改善毫米波系统的性能。
---
英文标题:
《Measurements and Characterisation of Surface Scattering at 60 GHz》
---
作者:
Angelos A. Goulianos, Alberto L. Freire, Tom Barratt, Evangelos
Mellios, Peter Cain, Moray Rumney, Andrew Nix and Mark Beach
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper presents the analysis and characterization of the surface scattering process for both specular and diffused components. The study is focused on the investigation of various building materials each having a different roughness, at a central frequency of 60GHz. Very large signal strength variations in first order scattered components is observed as the user moves over very short distances. This is due to the small-scale fading caused by rough surface scatterers. Furthermore, it is shown that the diffused scattering depends on the material roughness, the angle of incidence and the distance from the surface. Finally, results indicate that reflections from rough materials may suffer from high depolarization, a phenomenon that can potentially be exploited in order to improve the performance of mm-Wave systems using polarization diversity.
---
PDF链接:
https://arxiv.org/pdf/1710.05631