摘要翻译:
讨论了定量研究相关矩阵性质的一些方法。相关矩阵在投资组合优化和金融市场中资产价格动态的其他几种定量描述中发挥着重要作用。具体来说,我们讨论了如何定义并从相关矩阵中获得层次树、基于相关的树和网络。对相关矩阵执行的用于检测相关矩阵的统计可靠方面的层次聚类和其他过程被视为相关矩阵的过滤过程。我们还讨论了一种将分层嵌套因子模型与由相关矩阵得到的分层树关联的方法。利用Kullback-Leibler距离量化了滤波过程中保留的信息及其对统计波动的稳定性。
---
英文标题:
《Correlation, hierarchies, and networks in financial markets》
---
作者:
M. Tumminello, F. Lillo, R.N. Mantegna
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
英文摘要:
We discuss some methods to quantitatively investigate the properties of correlation matrices. Correlation matrices play an important role in portfolio optimization and in several other quantitative descriptions of asset price dynamics in financial markets. Specifically, we discuss how to define and obtain hierarchical trees, correlation based trees and networks from a correlation matrix. The hierarchical clustering and other procedures performed on the correlation matrix to detect statistically reliable aspects of the correlation matrix are seen as filtering procedures of the correlation matrix. We also discuss a method to associate a hierarchically nested factor model to a hierarchical tree obtained from a correlation matrix. The information retained in filtering procedures and its stability with respect to statistical fluctuations is quantified by using the Kullback-Leibler distance.
---
PDF链接:
https://arxiv.org/pdf/0809.4615