摘要翻译:
本文提出了一种估计政策干预对一个结果的影响的方法。我们在控制单元结果的历史上训练递归
神经网络,以学习预测未来结果的有用表示。然后将学习到的控制单元的表示应用于处理过的单元,以预测反事实的结果。RNN的特殊结构是利用面板数据中的时间依赖性,并能够学习控制单元结果之间的负面和非线性相互作用。我们将该方法应用于美国宅基地政策对公立学校支出的长期影响估计问题。
---
英文标题:
《RNN-based counterfactual prediction, with an application to homestead
policy and public schooling》
---
作者:
Jason Poulos, Shuxi Zeng
---
最新提交年份:
2021
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
This paper proposes a method for estimating the effect of a policy intervention on an outcome over time. We train recurrent neural networks (RNNs) on the history of control unit outcomes to learn a useful representation for predicting future outcomes. The learned representation of control units is then applied to the treated units for predicting counterfactual outcomes. RNNs are specifically structured to exploit temporal dependencies in panel data, and are able to learn negative and nonlinear interactions between control unit outcomes. We apply the method to the problem of estimating the long-run impact of U.S. homestead policy on public school spending.
---
PDF链接:
https://arxiv.org/pdf/1712.03553