摘要翻译:
贝叶斯统计推断的主要目标是确定后验分布。有时这些定律是对没有经验价值的量给出的。当人们把自己局限于考虑一个有限的视域框架时,这个严重的缺点就消失了。然而,假设无限的可交换性会产生相当容易处理的{后验}量,这在应用中是非常有吸引力的。因此,为了协调贝叶斯推理方法的这两个方面,本文对常见统计模型中有限参数的后验分布和相关参数的后验分布进行了定量比较。
---
英文标题:
《Quantitative comparisons between finitary posterior distributions and
Bayesian posterior distributions》
---
作者:
Federico Bassetti
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
The main object of Bayesian statistical inference is the determination of posterior distributions. Sometimes these laws are given for quantities devoid of empirical value. This serious drawback vanishes when one confines oneself to considering a finite horizon framework. However, assuming infinite exchangeability gives rise to fairly tractable {\it a posteriori} quantities, which is very attractive in applications. Hence, with a view to a reconciliation between these two aspects of the Bayesian way of reasoning, in this paper we provide quantitative comparisons between posterior distributions of finitary parameters and posterior distributions of allied parameters appearing in usual statistical models.
---
PDF链接:
https://arxiv.org/pdf/0807.1201