摘要翻译:
在零温极限下的有限连通度自旋玻璃中,自旋值不固定的未冻结顶点之间存在长程关联。通过第一步重复对称破缺(1RSB)腔理论,这种长程挫败部分被消除,但在这种平均场解中,残留的长程挫败可能仍然存在。本文利用布居数动力学的方法,对自旋玻璃系统的1RSB解进行了微扰-渗流分析,计算了系统的长程挫裂度的大小。我们研究了两个已有研究的模型系统:最小顶点覆盖问题和最大2-可满足性问题。这一工作为改进自旋玻璃的零温1RSB平均场理论提供了一条可能的途径。
---
英文标题:
《Long-range frustration in T=0 first-step replica-symmetry-broken
solutions of finite-connectivity spin glasses》
---
作者:
Jie Zhou (ITP-Cas), Hui Ma (ITP-Cas), and Haijun Zhou (ITP-Cas)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In a finite-connectivity spin-glass at the zero-temperature limit, long-range correlations exist among the unfrozen vertices (whose spin values being non-fixed). Such long-range frustrations are partially removed through the first-step replica-symmetry-broken (1RSB) cavity theory, but residual long-range frustrations may still persist in this mean-field solution. By way of population dynamics, here we perform a perturbation-percolation analysis to calculate the magnitude of long-range frustrations in the 1RSB solution of a given spin-glass system. We study two well-studied model systems, the minimal vertex-cover problem and the maximal 2-satisfiability problem. This work points to a possible way of improving the zero-temperature 1RSB mean-field theory of spin-glasses.
---
PDF链接:
https://arxiv.org/pdf/706.0259