全部版块 我的主页
论坛 经济学人 二区 外文文献专区
282 0
2022-03-04
摘要翻译:
延迟与求和(DAS)作为光声成像(PAI)中最常见的波束形成算法,由于实现简单,导致图像质量较低。为了提高DAS重建图像的质量,引入了延迟相乘和(DMAS)算法。然而,与基于特征空间的最小方差(EIBMV)等高分辨率自适应重建方法相比,分辨率的提高已经足够了。我们提出在DMAS的扩展中,通过替换现有的DAS代数,将EIBMV集成到DMAS公式中,称为EIBMV-DMAS。结果表明,EIBMV-DMAS在旁瓣电平和主瓣宽度方面明显优于DMAS。例如,在深度为35 mm时,EIBMV-DMAS在旁瓣方面分别比DAS、DMAS和EIBMV高出约108 dB、98 dB和44 dB。用全宽半最大(FWHM)和信噪比(SNR)进行了定量比较,结果表明,EIBMV-DMAS比DMAS降低了约1.65mm的半宽半最大(FWHM)和约15dB的信噪比。
---
英文标题:
《Photoacoustic Imaging using Combination of Eigenspace-Based Minimum
  Variance and Delay-Multiply-and-Sum Beamformers: Simulation Study》
---
作者:
Moein Mozaffarzadeh, Seyed Amin Ollah Izadi Avanji, Ali Mahloojifar,
  Mahdi Orooji
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
一级分类:Physics        物理学
二级分类:Medical Physics        医学物理学
分类描述:Radiation therapy. Radiation dosimetry. Biomedical imaging modelling.  Reconstruction, processing, and analysis. Biomedical system modelling and analysis. Health physics. New imaging or therapy modalities.
放射治疗。辐射剂量学。生物医学成像建模。重建、处理和分析。生物医学系统建模与分析。健康物理学。新的成像或治疗方式。
--

---
英文摘要:
  Delay and Sum (DAS), as the most common beamforming algorithm in Photoacoustic Imaging (PAI), having a simple implementation, results in a low-quality image. Delay Multiply and Sum (DMAS) was introduced to improve the quality of the reconstructed images using DAS. However, the resolution improvement is now well enough compared to high resolution adaptive reconstruction methods such as Eigenspace- Based Minimum Variance (EIBMV). We proposed to integrate the EIBMV inside the DMAS formula by replacing the existing DAS algebra inside the expansion of DMAS, called EIBMV-DMAS. It is shown that EIBMV-DMAS outperforms DMAS in the terms of levels of sidelobes and width of mainlobe significantly. For instance, at the depth of 35 mm, EIBMV-DMAS outperforms DMAS and EIBMV in the term of sidelobes for about 108 dB, 98 dB and 44 dB compared to DAS, DMAS, and EIBMV, respectively. The quantitative comparison has been conducted using Full-Width-Half-Maximum (FWHM) and Signal-to-Noise Ratio (SNR), and it was shown that EIBMV-DMAS reduces the FWHM about 1.65 mm and improves the SNR about 15 dB, compared to DMAS.
---
PDF链接:
https://arxiv.org/pdf/1709.06523
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群