摘要翻译:
对于数学BB{C}[X_1,X_2,...,x_n]$中的任意多项式$P,我们描述了一个由一些代数偏微分方程组成的线性方程组解的$mathBB{C}-向量空间$f(P)$,其中$f(P)$的维数是$P$的不可约因子的个数。此外,利用$F(P)$的知识,利用GCD给出了多项式$P$的完全因式分解。这推广了Ruppert和Gao在$n=2$情况下的结果。
---
英文标题:
《Topology and Factorization of Polynomials》
---
作者:
Hani Shaker
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
For any polynomial $P \in \mathbb{C}[X_1,X_2,...,X_n]$, we describe a $\mathbb{C}$-vector space $F(P)$ of solutions of a linear system of equations coming from some algebraic partial differential equations such that the dimension of $F(P)$ is the number of irreducible factors of $P$. Moreover, the knowledge of $F(P)$ gives a complete factorization of the polynomial $P$ by taking gcd's. This generalizes previous results by Ruppert and Gao in the case $n=2$.
---
PDF链接:
https://arxiv.org/pdf/0704.3363