摘要翻译:
我们研究了四次三重空间、五次四重空间和二重空间上的对数正则阈值。作为应用,我们证明了如果它们是一般的,则它们具有Kaehler-Einstein度量。
---
英文标题:
《Log canonical thresholds of certain Fano hypersurfaces》
---
作者:
Ivan Cheltsov and Jihun Park and Joonyeong Won
---
最新提交年份:
2015
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
We study log canonical thresholds on quartic threefolds, quintic fourfolds, and double spaces. As an application, we show that they have a Kaehler-Einstein metric if they are general.
---
PDF链接:
https://arxiv.org/pdf/0706.0751