摘要翻译:
讨论了定义在平面图边的二元变量的贝叶斯推理的一般模型。用[1,2]的循环演算方法计算配分函数的级数展开式。我们证明,对于平面图,通过类似于Fisher变换[3]的映射,在单连通环处截断级数减少了求辅助平面图上二聚体匹配模型的配分函数。因此,用Kasteleyn[4]的Pfaffian公式可以很容易地对截断级数重新求和。这允许通过信念传播(规范)变换来识别一大类计算可处理的平面模型,这些模型可还原为二聚体模型。Pfaffian表示也可以扩展到全循环级数,在这种情况下,展开变成Pfaffian贡献的和,每个贡献与原始图的子图的扩展上的二聚体匹配相关联。讨论了Pfaffian表示的算法结果,以及与量子和非平面模型的关系。
---
英文标题:
《Belief Propagation and Loop Series on Planar Graphs》
---
作者:
Michael Chertkov, Vladimir Y. Chernyak and Razvan Teodorescu
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of [1, 2] is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation [3], to evaluating the partition function of the dimer matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn [4]. This allows to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed.
---
PDF链接:
https://arxiv.org/pdf/0802.3950