摘要翻译:
布尔网络作为分子网络的模型,在系统生物学中发挥着越来越重要的作用。本文描述了一个以web服务形式提供的软件包Polynome,该软件包帮助用户根据实验数据和生物输入构建布尔网络模型。其关键特征是连续模型参数估计的离散模拟。该软件只需实验数据作为输入,就可以作为从实验时间过程数据反求布尔网络模型的工具。
---
英文标题:
《Parameter estimation for Boolean models of biological networks》
---
作者:
Elena Dimitrova, Luis David Garcia-Puente, Franziska Hinkelmann, Abdul
S. Jarrah, Reinhard Laubenbacher, Brandilyn Stigler, Michael Stillman, and
Paola Vera-Licona
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Molecular Networks 分子网络
分类描述:Gene regulation, signal transduction, proteomics, metabolomics, gene and enzymatic networks
基因调控、信号转导、蛋白质组学、代谢组学、基因和酶网络
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network models based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.
---
PDF链接:
https://arxiv.org/pdf/0908.3037