全部版块 我的主页
论坛 经济学人 二区 外文文献专区
299 0
2022-03-04
摘要翻译:
本文研究了预测与专家意见的博弈问题。针对单步增益不受限制的情况,对跟随摄动导引头的Kalai和Vempala算法进行了改进。我们证明了在一般情况下,任何概率预测算法的累积增益都可能比池中某个专家的增益差得多。然而,在一般情况下,我们给出了该累积增益的下界,并构造了一个具有最优性能的通用算法;我们还证明了当专家池的一步增益存在“有限偏差”时,我们的算法的性能接近于最佳专家的性能。
---
英文标题:
《Prediction with Expert Advice in Games with Unbounded One-Step Gains》
---
作者:
Vladimir V. V'yugin
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The games of prediction with expert advice are considered in this paper. We present some modification of Kalai and Vempala algorithm of following the perturbed leader for the case of unrestrictedly large one-step gains. We show that in general case the cumulative gain of any probabilistic prediction algorithm can be much worse than the gain of some expert of the pool. Nevertheless, we give the lower bound for this cumulative gain in general case and construct a universal algorithm which has the optimal performance; we also prove that in case when one-step gains of experts of the pool have ``limited deviations'' the performance of our algorithm is close to the performance of the best expert.
---
PDF链接:
https://arxiv.org/pdf/0806.4391
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群