全部版块 我的主页
论坛 经济学人 二区 外文文献专区
260 0
2022-03-04
摘要翻译:
我们详细解释了为什么交互自回避行走(ISAW)的正则配分函数恰好等价于与生长行走(如交互生长行走(IGW))相关的权重的配置平均值,如果平均值取自行走的整个谱系树的话。在这种情况下,我们已经证明,如果局域生长规则是温度相关的,那么并不总是可能将态密度因子排除在正则配分函数之外。我们给出了金刚石晶格上IGWs的蒙特卡罗结果,以证明可用于研究的实际IGW构型是与温度有关的,尽管加权平均导致了预期的相互作用自回避行走(ISAW)的热力学行为。
---
英文标题:
《A growth walk model for estimating the canonical partition function of
  Interacting Self Avoiding Walk》
---
作者:
S. L. Narasimhan, P. S. R. Krishna, M. Ponmurugan and K. P. N. Murthy
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We have explained in detail why the canonical partition function of Interacting Self Avoiding Walk (ISAW), is exactly equivalent to the configurational average of the weights associated with growth walks, such as the Interacting Growth Walk (IGW), if the average is taken over the entire genealogical tree of the walk. In this context, we have shown that it is not always possible to factor the the density of states out of the canonical partition function if the local growth rule is temperature-dependent. We have presented Monte Carlo results for IGWs on a diamond lattice in order to demonstrate that the actual set of IGW configurations available for study is temperature-dependent even though the weighted averages lead to the expected thermodynamic behavior of Interacting Self Avoiding Walk (ISAW).
---
PDF链接:
https://arxiv.org/pdf/706.0065
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群