摘要翻译:
我们建立了固定数目的非相互作用玻色子在方盒势中的配分函数和基态占据率的递推关系,并确定了基态比热和粒子数的温度依赖关系。与Feynman统计力学教科书中忽略基态的特殊作用的早期理论相比,本文建立了一个适当的半经典处理,得到了正确的小T行为。结果与精确的量子力学处理进行了比较。此外,我们还导出了系统的有限尺寸效应。
---
英文标题:
《Condensation of Ideal Bose Gas Confined in a Box Within a Canonical
Ensemble》
---
作者:
Konstantin Glaum, Hagen Kleinert, Axel Pelster
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We set up recursion relations for the partition function and the ground-state occupancy for a fixed number of non-interacting bosons confined in a square box potential and determine the temperature dependence of the specific heat and the particle number in the ground state. A proper semiclassical treatment is set up which yields the correct small-T-behavior in contrast to an earlier theory in Feynman's textbook on Statistical Mechanics, in which the special role of the ground state was ignored. The results are compared with an exact quantum mechanical treatment. Furthermore, we derive the finite-size effect of the system.
---
PDF链接:
https://arxiv.org/pdf/707.2715