摘要翻译:
利用迭代函数系统引入了六顶点模型的分形结构。分形维数满足一个由六顶点模型的自由能写成的方程。指出转移矩阵法和格论中引入的$N$-等价关系也被引入分形几何领域。所有结果均可推广到适用于传递矩阵处理的模型,从而给出了可解晶格模型与分形几何之间的一般关系。
---
英文标题:
《Fractal structure of a solvable lattice model》
---
作者:
Kazuhiko Minami
---
最新提交年份:
2009
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
  Fractal structure of the six-vertex model is introduced with the use of the IFS (Iterated Function Systems). The fractal dimension satisfies an equation written by the free energy of the six-vertex model. It is pointed out that the transfer matrix method and the $n$-equivalence relation introduced in lattice theories have also been introduced in the area of fractal geometry. All the results can be generalized for the models suitable to the transfer matrix treatment, and hence this gives general relation between solvable lattice models and fractal geometry. 
---
PDF链接:
https://arxiv.org/pdf/801.0186