摘要翻译:
一个分类器在不需要完全重新训练的情况下,通过进化分类器来接受新信息和新类的能力被称为增量学习。增量学习已经成功地应用于许多分类问题,在这些问题中,数据是变化的,并且不是一次都可以获得的。本文将最新的增量学习算法Learn++与基于遗传算法的增量学习算法(ILUGA)进行了比较。Learn++在测试新的ILUGA方法的基准数据集上显示了良好的增量学习能力。ILUGA也显示了良好的增量学习能力,只使用少量的分类器,并且不会遭受灾难性的遗忘。ILUGA在光学字符识别(OCR)和Wine数据集上取得了良好的结果,其总体准确率分别为93%和94%,在困难的多类OCR数据集上比Learn++.MT提高了4%。
---
英文标题:
《Evolving Classifiers: Methods for Incremental Learning》
---
作者:
Greg Hulley and Tshilidzi Marwala
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
  The ability of a classifier to take on new information and classes by evolving the classifier without it having to be fully retrained is known as incremental learning. Incremental learning has been successfully applied to many classification problems, where the data is changing and is not all available at once. In this paper there is a comparison between Learn++, which is one of the most recent incremental learning algorithms, and the new proposed method of Incremental Learning Using Genetic Algorithm (ILUGA). Learn++ has shown good incremental learning capabilities on benchmark datasets on which the new ILUGA method has been tested. ILUGA has also shown good incremental learning ability using only a few classifiers and does not suffer from catastrophic forgetting. The results obtained for ILUGA on the Optical Character Recognition (OCR) and Wine datasets are good, with an overall accuracy of 93% and 94% respectively showing a 4% improvement over Learn++.MT for the difficult multi-class OCR dataset. 
---
PDF链接:
https://arxiv.org/pdf/0709.3965