摘要翻译:
我们考虑了一类由n次大整数d索引的实随机多项式,重点讨论了这类随机多项式的实根个数。这类多项式在[0,1]区间内无实根的概率以幂律n^{-θ(d)}的形式衰减,其中θ(d)>0是空间维d中具有随机初始条件的扩散方程的持续概率衰减的指数。对于n偶数,这样的多项式在全实轴上无根的概率衰减为n^{-2(\theta(d)+\theta(2))}。对于d=1,这种联系允许实随机多项式的物理实现。我们进一步证明了这类多项式在[0,1]中精确有k个实根的概率有一个由n^{-\tilde\phi(k/\log n)}给出的不寻常的标度形式,其中\tilde\phi(x)是一个普遍的大偏差函数。
---
英文标题:
《Statistics of the Number of Zero Crossings : from Random Polynomials to
Diffusion Equation》
---
作者:
Gregory Schehr, Satya N. Majumdar
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We consider a class of real random polynomials, indexed by an integer d, of large degree n and focus on the number of real roots of such random polynomials. The probability that such polynomials have no real root in the interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d)>0 is the exponent associated to the decay of the persistence probability for the diffusion equation with random initial conditions in space dimension d. For n even, the probability that such polynomials have no root on the full real axis decays as n^{-2(\theta(d) + \theta(2))}. For d=1, this connection allows for a physical realization of real random polynomials. We further show that the probability that such polynomials have exactly k real roots in [0,1] has an unusual scaling form given by n^{-\tilde \phi(k/\log n)} where \tilde \phi(x) is a universal large deviation function.
---
PDF链接:
https://arxiv.org/pdf/705.2648