全部版块 我的主页
论坛 经济学人 二区 外文文献专区
281 0
2022-03-04
摘要翻译:
我们确定了例外型E_6、E_7和E_8复代数群的周环,给出了相应标志簇的Schubert簇的回拉像所表示的显式生成元。这是R.Marlin关于计算SO_n、Spin_n、G_2和F_4周环的工作的继续。我们的方法是基于Schubert演算的相应的标志变种,它有自己的兴趣。
---
英文标题:
《The Chow rings of the algebraic groups E_6, E_7, and E_8》
---
作者:
Shizuo Kaji and Masaki Nakagawa
---
最新提交年份:
2010
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Topology        代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We determine the Chow rings of the complex algebraic groups of the exceptional type E_6, E_7, and E_8, giving the explicit generators represented by the pull-back images of Schubert varieties of the corresponding flag varieties. This is a continuation of the work of R. Marlin on the computation of the Chow rings of SO_n, Spin_n, G_2, and F_4. Our method is based on Schubert calculus of the corresponding flag varieties, which has its own interest.
---
PDF链接:
https://arxiv.org/pdf/0709.3702
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群