全部版块 我的主页
论坛 经济学人 二区 外文文献专区
245 0
2022-03-04
摘要翻译:
本文提出了一种新的资产动态分类方法。其基本生成过程被假定为随机微分方程的扩散过程解,并在离散时间观察。观测网格不需要缩小到零。作为两个观测路径之间的距离,考虑了相应的估计马尔可夫算子的二次距离。对来自纽约证交所/纳斯达克股票的合成数据和真实金融数据的分析表明,与其他常用的度量标准相反,这种距离似乎能够捕捉漂移系数和扩散系数的差异。
---
英文标题:
《Clustering of discretely observed diffusion processes》
---
作者:
Alessandro De Gregorio, Stefano Maria Iacus
---
最新提交年份:
2008
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  In this paper a new dissimilarity measure to identify groups of assets dynamics is proposed. The underlying generating process is assumed to be a diffusion process solution of stochastic differential equations and observed at discrete time. The mesh of observations is not required to shrink to zero. As distance between two observed paths, the quadratic distance of the corresponding estimated Markov operators is considered. Analysis of both synthetic data and real financial data from NYSE/NASDAQ stocks, give evidence that this distance seems capable to catch differences in both the drift and diffusion coefficients contrary to other commonly used metrics.
---
PDF链接:
https://arxiv.org/pdf/0809.3902
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群