摘要翻译:
研究了面向5G的云无线接入网和雾无线接入网的用户小区关联(或用户分簇)和波束形成设计。CRAN能够在多个接入点服务的所有小小区上实现云集中的资源和功率分配优化。然而,将每个AP连接到云的fronthaul链路引入延迟,并导致过时的信道状态信息(CSI)。相比之下,FogRAN以局部优化为代价,实现了更低的延迟和更好的CSI质量。为了解决这些问题,我们提出了一种混合算法,该算法既利用了云的集中特性,利用过时的CSIs进行全局优化的预调度,又利用了FogRAN的分布式特性,利用高质量的CSIs进行精确的波束形成。集中式阶段能够考虑全局网络上的干扰模式,而分布式阶段允许减少延迟。仿真结果表明,在CSI不完善的情况下,FogRAN混合算法在吞吐量和时延方面都优于集中式算法。
---
英文标题:
《User Pre-Scheduling and Beamforming with Imperfect CSI in 5G Fog Radio
Access Networks》
---
作者:
Nicolas Pontois, Megumi Kaneko, Thi Ha Ly Dinh and Lila Boukhatem
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Networking and Internet Architecture 网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
---
英文摘要:
We investigate the user-to-cell association (or user-clustering) and beamforming design for Cloud Radio Access Networks (CRANs) and Fog Radio Access Networks (FogRANs) for 5G. CRAN enables cloud centralized resource and power allocation optimization over all the small cells served by multiple Access Points (APs). However, the fronthaul links connecting each AP to the cloud introduce delays and cause outdated Channel State Information (CSI). By contrast, FogRAN enables lower latencies and better CSI qualities, at the cost of local optimization. To alleviate these issues, we propose a hybrid algorithm exploiting both the centralized feature of the cloud for globally-optimized pre-scheduling using outdated CSIs and the distributed nature of FogRAN for accurate beamforming with high quality CSIs. The centralized phase enables to consider the interference patterns over the global network, while the distributed phase allows for latency reduction. Simulation results show that our hybrid algorithm for FogRAN outperforms the centralized algorithm under imperfect CSI, both in terms of throughput and delays.
---
PDF链接:
https://arxiv.org/pdf/1802.01104