摘要翻译:
我们证明了对于定义在数域$k$上的任意一类椭圆曲面$x$,如果在$x$上有一个代数点只位于有限多条有理曲线上,那么在$x$上有一个代数点不位于有理曲线上。特别地,我们的定理适用于一大类椭圆$K3$曲面,这与Bogomolov在1981年提出的一个问题有关。我们应用我们的结果在不位于任何光滑有理曲线上的$k3$曲面上构造了一个显式代数点。
---
英文标题:
《K3 surfaces, rational curves, and rational points》
---
作者:
Arthur Baragar, David McKinnon
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We prove that for any of a wide class of elliptic surfaces $X$ defined over a number field $k$, if there is an algebraic point on $X$ that lies on only finitely many rational curves, then there is an algebraic point on $X$ that lies on no rational curves. In particular, our theorem applies to a large class of elliptic $K3$ surfaces, which relates to a question posed by Bogomolov in 1981. We apply our results to construct an explicit algebraic point on a $K3$ surface that does not lie on any smooth rational curves.
---
PDF链接:
https://arxiv.org/pdf/0709.0663