摘要翻译:
在这篇文章中,我们认为,在自然语言语义学中遇到的困难在很大程度上是由于使用了没有任何内容的符号操纵系统。在这样的系统中,几乎与我们对世界的常识性看法没有任何联系,而且很难想象一个人如何正式地解释我们日常话语中经常隐含但几乎从未明确陈述的大量内容。我们认为,解决方案是一种基于本体论的组合语义学,它反映了我们对世界的常识性看法和我们用普通语言谈论它的方式。在我们设想的组合逻辑中,存在着本体论(或第一内涵)概念和逻辑(或第二内涵)概念,其中本体论概念不仅包括戴维森事件,而且还包括其他抽象对象(例如,状态、过程、性质、活动、属性等)。这里将证明,在这样一个框架中,自然语言语义学中的许多挑战(例如,转喻、内涵、隐喻等)可以得到适当和统一的解决。
---
英文标题:
《Ontology and Formal Semantics - Integration Overdue》
---
作者:
Walid S. Saba
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
---
英文摘要:
In this note we suggest that difficulties encountered in natural language semantics are, for the most part, due to the use of mere symbol manipulation systems that are devoid of any content. In such systems, where there is hardly any link with our common-sense view of the world, and it is quite difficult to envision how one can formally account for the considerable amount of content that is often implicit, but almost never explicitly stated in our everyday discourse. The solution, in our opinion, is a compositional semantics grounded in an ontology that reflects our commonsense view of the world and the way we talk about it in ordinary language. In the compositional logic we envision there are ontological (or first-intension) concepts, and logical (or second-intension) concepts, and where the ontological concepts include not only Davidsonian events, but other abstract objects as well (e.g., states, processes, properties, activities, attributes, etc.) It will be demonstrated here that in such a framework, a number of challenges in the semantics of natural language (e.g., metonymy, intensionality, metaphor, etc.) can be properly and uniformly addressed.
---
PDF链接:
https://arxiv.org/pdf/0712.1529