摘要翻译:
本文定义了具有有限型单位根的$\mathcal{H}$值自回归(AR)过程,其中$\mathcal{H}$是一个无限维可分Hilbert空间,并导出了Granger-Johansen表示定理的推广,该定理适用于任意积分阶$d=1,2,\dots$。一个存在性定理证明了有限型单位根AR的解必然是某个有限整数D的积分,并给出了具有有限个双边随机游动(累积)型公共趋势和无穷维协积分空间的公共趋势表示。一个刻划定理阐明了AR算子的结构与$(i)$积分阶,$(i)$吸引子空间和协整空间的结构,$(ii)$协整关系的表达式,$(iv)$过程的三角表示之间的联系。除0阶的协整关系数为无穷多外,$\mathcal{H}$值有限型单位根ARs的表示与一般有限维VAR的表示是一致的,对应于特例$\mathcal{H}=\mathbb{R}^p$。
---
英文标题:
《Cointegration in functional autoregressive processes》
---
作者:
Massimo Franchi and Paolo Paruolo
---
最新提交年份:
2018
---
分类信息:
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
  This paper defines the class of $\mathcal{H}$-valued autoregressive (AR) processes with a unit root of finite type, where $\mathcal{H}$ is an infinite dimensional separable Hilbert space, and derives a generalization of the Granger-Johansen Representation Theorem valid for any integration order $d=1,2,\dots$. An existence theorem shows that the solution of an AR with a unit root of finite type is necessarily integrated of some finite integer $d$ and displays a common trends representation with a finite number of common stochastic trends of the type of (cumulated) bilateral random walks and an infinite dimensional cointegrating space. A characterization theorem clarifies the connections between the structure of the AR operators and $(i)$ the order of integration, $(ii)$ the structure of the attractor space and the cointegrating space, $(iii)$ the expression of the cointegrating relations, and $(iv)$ the Triangular representation of the process. Except for the fact that the number of cointegrating relations that are integrated of order 0 is infinite, the representation of $\mathcal{H}$-valued ARs with a unit root of finite type coincides with that of usual finite dimensional VARs, which corresponds to the special case $\mathcal{H}=\mathbb{R}^p$. 
---
PDF链接:
https://arxiv.org/pdf/1712.07522