摘要翻译:
构造了复环面范畴到Effros-Shen代数范畴的协变函子。函子将同构复环面映射到稳定同构Effros-Shen代数上。我们的构造是基于黎曼曲面的Teichmueller理论。
---
英文标题:
《On a Teichmueller functor between the categories of complex tori and the
Effros-Shen algebras》
---
作者:
Igor Nikolaev
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Operator Algebras 算子代数
分类描述:Algebras of operators on Hilbert space, C^*-algebras, von Neumann algebras, non-commutative geometry
Hilbert空间上算子的代数,C^*-代数,von Neumann代数,非交换几何
--
---
英文摘要:
A covariant functor from the category of the complex tori to the category of the Effros-Shen algebras is constructed. The functor maps isomorphic complex tori to the stably isomorphic Effros-Shen algebras. Our construction is based on the Teichmueller theory of the Riemann surfaces.
---
PDF链接:
https://arxiv.org/pdf/0706.4477