摘要翻译:
本文证明了定义在数域上的一个充分一般的三次四重线上有理点的势密度,其中充分一般是指满足一个Terasoma型的条件。这些变体具有平凡的规范丛,并具有等于$\MathBB{Z}$的几何Picard群。
---
英文标题:
《Potential density of rational points on the variety of lines of a cubic
fourfold》
---
作者:
Ekaterina Amerik, Claire Voisin
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove the potential density of rational points on the variety of lines of a sufficiently general cubic fourfold defined over a number field, where ``sufficiently general'' means that a condition of Terasoma type is satisfied. These varieties have trivial canonical bundle and have geometric Picard group equal to $\mathbb{Z}$.
---
PDF链接:
https://arxiv.org/pdf/0707.3948