全部版块 我的主页
论坛 经济学人 二区 外文文献专区
333 0
2022-03-05
摘要翻译:
众所周知,情感识别性能并不理想。本研究的工作致力于提高情感识别的性能,采用两阶段识别器将性别识别器和情感识别器结合在一个系统中。隐马尔可夫模型(HMMs)和超分段隐马尔可夫模型(SPHMMs)被用作两级识别器的分类器。该识别器已经在两个不同的、独立的情感语音数据库上进行了测试。第一个数据库是我们收集的数据库,第二个数据库是情感韵律语音和笔录数据库。在每个数据库中都使用了包括中性状态在内的六种基本情绪。结果表明,基于两阶段方法(性别依赖情感识别器)的情感识别性能比不含性别信息的情感识别器和含正确性别信息的情感识别器分别提高了11%和5%。研究表明,当分类器完全偏向超音段模型而不受声学模型的影响时,情感识别性能最高。基于两阶段框架所得到的结果仅为人工评判者主观评价结果的2.28%。
---
英文标题:
《Gender-dependent emotion recognition based on HMMs and SPHMMs》
---
作者:
Ismail Shahin
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  It is well known that emotion recognition performance is not ideal. The work of this research is devoted to improving emotion recognition performance by employing a two-stage recognizer that combines and integrates gender recognizer and emotion recognizer into one system. Hidden Markov Models (HMMs) and Suprasegmental Hidden Markov Models (SPHMMs) have been used as classifiers in the two-stage recognizer. This recognizer has been tested on two distinct and separate emotional speech databases. The first database is our collected database and the second one is the Emotional Prosody Speech and Transcripts database. Six basic emotions including the neutral state have been used in each database. Our results show that emotion recognition performance based on the two-stage approach (gender-dependent emotion recognizer) has been significantly improved compared to that based on emotion recognizer without gender information and emotion recognizer with correct gender information by an average of 11% and 5%, respectively. This work shows that the highest emotion identification performance takes place when the classifiers are completely biased towards suprasegmental models and no impact of acoustic models. The results achieved based on the two-stage framework fall within 2.28% of those obtained in subjective assessment by human judges.
---
PDF链接:
https://arxiv.org/pdf/1801.06657
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群