全部版块 我的主页
论坛 经济学人 二区 外文文献专区
363 0
2022-03-05
摘要翻译:
我们给出了由$\p^a\乘以\p^b$的Segre嵌入引起的槽轮的Tate分辨率的项和微分的显式描述。我们证明了这种Tate分辨率下的映射要么来自Sylvester型映射,要么来自所谓的toric Jacobian的Bezout型映射。
---
英文标题:
《Tate Resolutions for Segre Embeddings》
---
作者:
David Cox, Evgeny Materov
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--

---
英文摘要:
  We give an explicit description of the terms and differentials of the Tate resolution of sheaves arising from Segre embeddings of $\P^a\times\P^b$. We prove that the maps in this Tate resolution are either coming from Sylvester-type maps, or from Bezout-type maps arising from the so-called toric Jacobian.
---
PDF链接:
https://arxiv.org/pdf/0711.0550
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群