摘要翻译:
针对协方差矩阵的大部分特征值不能用随机矩阵理论解释的问题,提出了随机参数模型来解释协方差矩阵的结构。在本文中,我们将探讨该模型的其他属性,比如当一个模型采用更大的缩放尺度时,其PDF的缩放。特别注意了模型时间序列的多重分形结构,它揭示了一种与已知的程式化事实相兼容的尺度结构,以合理地选择参数值。
---
英文标题:
《Multifractality in the Random Parameters Model》
---
作者:
Camilo Rodrigues Neto, Andr\' e C.R. Martins
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
The Random Parameters model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore other properties of the model, like the scaling of its PDF as one take larger scales. Special attention is given to the multifractal structure of the model time series, which revealed a scaling structure compatible with the known stylized facts for a reasonable choice of the parameter values.
---
PDF链接:
https://arxiv.org/pdf/0710.5497