全部版块 我的主页
论坛 经济学人 二区 外文文献专区
307 0
2022-03-05
摘要翻译:
支持向量机(SVMs)是土地覆盖制图界一种较新的监督分类技术。它们起源于统计学习理论,并因其鲁棒性、准确性和即使在使用较小的训练样本时也是有效的而获得突出地位。支持向量机本质上是二值分类器,但可以用来处理遥感研究中常见的多种分类任务。常用的两种方法是一对一(1A1)和一对全(1AA)技术。本文评价了这些方法对土地覆盖制图的影响和意义。本研究的主要发现是,虽然1AA技术更容易产生未分类和混合像素,但其分类精度与1A1方法没有显著差异。作者的结论是,最终所采用的技术的选择归结为个人偏好和手头数据集的独特性。
---
英文标题:
《Classification of Images Using Support Vector Machines》
---
作者:
Gidudu Anthony, Hulley Greg and Marwala Tshilidzi
---
最新提交年份:
2007
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Support Vector Machines (SVMs) are a relatively new supervised classification technique to the land cover mapping community. They have their roots in Statistical Learning Theory and have gained prominence because they are robust, accurate and are effective even when using a small training sample. By their nature SVMs are essentially binary classifiers, however, they can be adopted to handle the multiple classification tasks common in remote sensing studies. The two approaches commonly used are the One-Against-One (1A1) and One-Against-All (1AA) techniques. In this paper, these approaches are evaluated in as far as their impact and implication for land cover mapping. The main finding from this research is that whereas the 1AA technique is more predisposed to yielding unclassified and mixed pixels, the resulting classification accuracy is not significantly different from 1A1 approach. It is the authors conclusions that ultimately the choice of technique adopted boils down to personal preference and the uniqueness of the dataset at hand.
---
PDF链接:
https://arxiv.org/pdf/0709.3967
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群