摘要翻译:
从输出动量通量的角度研究了开放量子系统的共振态。我们表明,如果我们使用一个膨胀的积分体积来考虑输出动量通量,那么对于共振态,粒子的数目是守恒的;在一个固定的积分体积内,粒子的数目将呈指数衰减。此外,我们还介绍了利用有效势处理共振态的新的数值方法。我们首先给出了在复能量平面上寻找共振极点的数值方法。该方法迭代寻找能量特征值。我们发现,我们的方法导致了一个超收敛,收敛指数关于迭代步长。该方法完全独立于常用的复杂标度。我们还给出了一个计算有限空间区域内共振态时间演化的数值技巧。由于共振态的波函数偏离散射势而发散,在有限区域内很难用数值方法跟踪其时间演化。
---
英文标题:
《Some properties of the resonant state in quantum mechanics and its
computation》
---
作者:
Naomichi Hatano (IIS, U. Tokyo), Keita Sasada (Dept. Phys., U. Tokyo),
Hiroaki Nakamura (NIFS), Tomio Petrosky (U Texas at Austin)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
一级分类:Physics 物理学
二级分类:Mesoscale and Nanoscale Physics 介观和纳米物理
分类描述:Semiconducting nanostructures: quantum dots, wires, and wells. Single electronics, spintronics, 2d electron gases, quantum Hall effect, nanotubes, graphene, plasmonic nanostructures
半导体纳米结构:量子点、线和阱。单电子学,自旋电子学,二维电子气,量子霍尔效应,纳米管,石墨烯,等离子纳米结构
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Nuclear Theory 核理论
分类描述:Nuclear Theory Theory of nuclear structure covering wide area from models of hadron structure to neutron stars. Nuclear equation of states at different external conditions. Theory of nuclear reactions including heavy-ion reactions at low and high energies. It does not include problems of data analysis, physics of nuclear reactors, problems of safety, reactor construction
核理论涵盖从强子结构模型到中子星等广泛领域的核结构理论。不同外部条件下的核状态方程。核反应理论,包括低能和高能的重离子反应。它不包括
数据分析问题、核反应堆物理问题、安全问题、反应堆建设问题
--
一级分类:Physics 物理学
二级分类:Atomic Physics 原子物理学
分类描述:Atomic and molecular structure, spectra, collisions, and data. Atoms and molecules in external fields. Molecular dynamics and coherent and optical control. Cold atoms and molecules. Cold collisions. Optical lattices.
原子和分子结构,光谱,碰撞和数据。外场中的原子和分子。分子动力学与相干和光学控制。冷原子和分子。冷碰撞。光学晶格。
--
---
英文摘要:
The resonant state of the open quantum system is studied from the viewpoint of the outgoing momentum flux. We show that the number of particles is conserved for a resonant state, if we use an expanding volume of integration in order to take account of the outgoing momentum flux; the number of particles would decay exponentially in a fixed volume of integration. Moreover, we introduce new numerical methods of treating the resonant state with the use of the effective potential. We first give a numerical method of finding a resonance pole in the complex energy plane. The method seeks an energy eigenvalue iteratively. We found that our method leads to a super-convergence, the convergence exponential with respect to the iteration step. The present method is completely independent of commonly used complex scaling. We also give a numerical trick for computing the time evolution of the resonant state in a limited spatial area. Since the wave function of the resonant state is diverging away from the scattering potential, it has been previously difficult to follow its time evolution numerically in a finite area.
---
PDF链接:
https://arxiv.org/pdf/705.1388