摘要翻译:
由于车辆的高机动性,毫米波车载通信的波束对准是一个具有挑战性的问题。最近的研究提出了一些用于车辆到基础设施(V2I)通信的路侧单元(RSU)波束切换技术,利用车辆的初始位置和速度信息,通过专用短程通信(DSRC)发送到RSU。然而,所提供的信息的不准确会导致光束失准。文献中建议了一些梁的设计参数来对抗这种影响。但是这些参数应该如何调优呢?在此,我们评估了所有这些参数的影响,并提出了一个波束设计效率度量,用于在存在估计误差的情况下进行波束对准,并通过选择正确的设计参数来提高性能。
---
英文标题:
《Beam Switching Techniques for Millimeter Wave Vehicle to Infrastructure
Communications》
---
作者:
Hamed Mohammadi, Reza Mohammadkhani
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Beam alignment for millimeter wave (mm Wave) vehicular communications is challenging due to the high mobility of vehicles. Recent studies have proposed some beam switching techniques at Road Side Unit (RSU) for vehicle to infrastructure (V2I) communications, employing initial position and speed information of vehicles, that are sent through Dedicated Short Range Communications (DSRC) to the RSU. However, inaccuracies of the provided information lead to beam misalignment. Some beam design parameters are suggested in the literature to combat this effect. But how these parameters should be tuned? Here, we evaluate the effect of all these parameters, and propose a beam design efficiency metric to perform beam alignment in the presence of the estimation errors, and to improve the performance by choosing the right design parameters.
---
PDF链接:
https://arxiv.org/pdf/1710.00342