全部版块 我的主页
论坛 经济学人 二区 外文文献专区
279 0
2022-03-05
摘要翻译:
目的:心房颤动(AF)是一种常见的心律失常,与心力衰竭、中风、精神健康不良、生活质量下降和死亡等致命性和衰弱性后果相关。拥有一个自动诊断各种类型心律失常的系统将有助于心脏病学家采取适当的预防措施,并改善对心脏病的分析。为此,本文提出了一种新的心电图(ECG)记录中心律失常的自动检测和分类方法。方法:采用卷积神经网络(CNNs)和一系列长短时记忆(LSTM)单元相结合的方法,通过汇集、退出和归一化技术来提高其准确性。该网络在每18个输入样本预测一个分类,我们选择最后的预测进行分类。结果在2017年物理网挑战赛训练数据集上进行了交叉验证,该数据集包含8528个单导联心电图记录,持续时间从9秒到60多秒。结果:在没有显式特征选择的情况下,10层交叉验证在保留测试数据(所有折叠的平均标准差)上给出了0.83.10-0.015的总F-测度,在挑战入口服务器的隐藏数据集上给出了0.80的总F-测度。
---
英文标题:
《Cardiac Arrhythmia Detection from ECG Combining Convolutional and Long
  Short-Term Memory Networks》
---
作者:
Philip Warrick (1) and Masun Nabhan Homsi (2) ((1) PeriGen. Inc.,
  Montreal, Canada, (2) Simon Bolivar University, Caracas, Venezuela)
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  Objectives: Atrial fibrillation (AF) is a common heart rhythm disorder associated with deadly and debilitating consequences including heart failure, stroke, poor mental health, reduced quality of life and death. Having an automatic system that diagnoses various types of cardiac arrhythmias would assist cardiologists to initiate appropriate preventive measures and to improve the analysis of cardiac disease. To this end, this paper introduces a new approach to detect and classify automatically cardiac arrhythmias in electrocardiograms (ECG) recordings.   Methods: The proposed approach used a combination of Convolution Neural Networks (CNNs) and a sequence of Long Short-Term Memory (LSTM) units, with pooling, dropout and normalization techniques to improve their accuracy. The network predicted a classification at every 18th input sample and we selected the final prediction for classification. Results were cross-validated on the Physionet Challenge 2017 training dataset, which contains 8,528 single lead ECG recordings lasting from 9s to just over 60s.   Results: Using the proposed structure and no explicit feature selection, 10-fold stratified cross-validation gave an overall F-measure of 0.83.10-0.015 on the held-out test data (mean-standard deviation over all folds) and 0.80 on the hidden dataset of the Challenge entry server.
---
PDF链接:
https://arxiv.org/pdf/1801.10033
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群