摘要翻译:
DNA序列的分类是生物信息学的一个重要研究领域,它使研究人员能够进行基因组分析和检测可能的疾病。本文采用三种最先进的算法,即卷积神经网络、深度神经网络和N-gram概率模型进行DNA分类。在此基础上,提出了一种基于Levenshtein距离和随机生成DNA子序列的特征提取方法,从DNA序列中提取信息丰富的特征。我们还使用了现有的基于3克的氨基酸特征提取方法,并将这两种特征提取方法与多种
机器学习算法相结合。四个不同的数据集,每个关于病毒性疾病,如新冠肺炎,艾滋病,流感和丙型肝炎,被用来评估不同的方法。实验结果表明,在不同的DNA数据集上,所有方法都取得了较高的准确率。此外,在最小的Covid-19数据集上,基于特定域的3gram特征提取方法总体上获得了最好的结果,而新提出的技术优于所有其他方法
---
英文标题:
《Comparing Machine Learning Algorithms with or without Feature Extraction
for DNA Classification》
---
作者:
Xiangxie Zhang, Ben Beinke, Berlian Al Kindhi and Marco Wiering
---
最新提交年份:
2020
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
The classification of DNA sequences is a key research area in bioinformatics as it enables researchers to conduct genomic analysis and detect possible diseases. In this paper, three state-of-the-art algorithms, namely Convolutional Neural Networks, Deep Neural Networks, and N-gram Probabilistic Models, are used for the task of DNA classification. Furthermore, we introduce a novel feature extraction method based on the Levenshtein distance and randomly generated DNA sub-sequences to compute information-rich features from the DNA sequences. We also use an existing feature extraction method based on 3-grams to represent amino acids and combine both feature extraction methods with a multitude of machine learning algorithms. Four different data sets, each concerning viral diseases such as Covid-19, AIDS, Influenza, and Hepatitis C, are used for evaluating the different approaches. The results of the experiments show that all methods obtain high accuracies on the different DNA datasets. Furthermore, the domain-specific 3-gram feature extraction method leads in general to the best results in the experiments, while the newly proposed technique outperforms all other methods on the smallest Covid-19 dataset
---
PDF链接:
https://arxiv.org/pdf/2011.00485