摘要翻译:
我们用Langmuir动力学和脉动壁研究了一维非对称排阻过程的动力学。在左边界,粒子被注入到晶格上;从那里,粒子跳到右边。沿着晶格,粒子可以吸附或解吸,右边界由壁粒子定义。围壁颗粒具有内在的前后跳跃和网状的向左漂移,不能解吸。通过Monte Carlo模拟,并采用移动框架有限段方法与平均场理论相结合,我们找到了墙获得稳态位置的参数状态。在其他情况下,壁会向左漂移并在注入位置从晶格上脱落,或者无限期地向右漂移。我们的结果讨论了系统的非平衡相、脉动边界层和实验室框架中的颗粒密度与脉动壁框架的关系。
---
英文标题:
《Dynamic Boundaries in Asymmetric Exclusion Processes》
---
作者:
Sarah A. Nowak, Pak-Wing Fok, and Tom Chou
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right boundary is defined by a wall particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady state position. In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift indefinitely to the right. Our results are discussed in the context of non-equilibrium phases of the system, fluctuating boundary layers, and particle densities in the lab frame versus the frame of the fluctuating wall.
---
PDF链接:
https://arxiv.org/pdf/708.0259