全部版块 我的主页
论坛 经济学人 二区 外文文献专区
332 0
2022-03-05
摘要翻译:
提出了一种用于高质量语音分析/合成的F0和浊音状态估计算法。这个问题是从一个不同的角度来处理的,即建模特征提取器在噪声下的行为,而不是直接建模语音信号。在时频局部性假设下,利用Monte-Carlo模拟产生的人工数据训练高斯混合模型(GMM)来表征提取特征与目标F0的联合分布。然后,训练好的GMM可以用来在预测的F0上生成一组条件分布,然后将这些分布组合起来,并通过Viterbi算法进行后处理,以给出最终的F0轨迹。对CSTR和CMU北极语音数据库的评价表明,该方法在全合成数据上训练,达到了比现有方法更低的粗差率。
---
英文标题:
《Nebula: F0 Estimation and Voicing Detection by Modeling the Statistical
  Properties of Feature Extractors》
---
作者:
Kanru Hua
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--

---
英文摘要:
  A F0 and voicing status estimation algorithm for high quality speech analysis/synthesis is proposed. This problem is approached from a different perspective that models the behavior of feature extractors under noise, instead of directly modeling speech signals. Under time-frequency locality assumptions, the joint distribution of extracted features and target F0 can be characterized by training a bank of Gaussian mixture models (GMM) on artificial data generated from Monte-Carlo simulations. The trained GMMs can then be used to generate a set of conditional distributions on the predicted F0, which are then combined and post-processed by Viterbi algorithm to give a final F0 trajectory. Evaluation on CSTR and CMU Arctic speech databases shows that the proposed method, trained on fully synthetic data, achieves lower gross error rates than state-of-the-art methods.
---
PDF链接:
https://arxiv.org/pdf/1710.11317
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群