摘要翻译:
设$G$是定义在$\c$上的$a$或$D$类型的简单代数群,$T$是$G$的最大环面。对于$g$的优势馀权$\lambda$,仿射Grassmanian$gr_g$中的Schubert类$\bar{Gr}_g^\lambda$的$t$-不动点子格式$(\bar{Gr}_g^\lambda)^t$是有限格式。证明了$\lambda$对应的一级仿射模的对偶与$(\bar{Gr}_g^\lambda)^t$的函数环($gr_g$上的某些线丛扭曲)之间存在天然同构。利用这一事实,我们给出了$a,D,e$型仿射代数的基本表示与格顶点代数之间的Frenkel-Kac-Segal同构的几何证明。
---
英文标题:
《Affine Demazure modules and $T$-fixed point subschemes in the affine
Grassmannian》
---
作者:
Xinwen Zhu
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $G$ be a simple algebraic group of type $A$ or $D$ defined over $\C$ and $T$ be a maximal torus of $G$. For a dominant coweight $\lambda$ of $G$, the $T$-fixed point subscheme $(\bar{Gr}_G^\lambda)^T$ of the Schubert variety $\bar{Gr}_G^\lambda$ in the affine Grassmannian $Gr_G$ is a finite scheme. We prove that there is a natural isomorphism between the dual of the level one affine Demazure module corresponding to $\lambda$ and the ring of functions (twisted by certain line bundle on $Gr_G$) of $(\bar{Gr}_G^\lambda)^T$. We use this fact to give a geometric proof of the Frenkel-Kac-Segal isomorphism between basic representations of affine algebras of $A,D,E$ type and lattice vertex algebras.
---
PDF链接:
https://arxiv.org/pdf/0710.5247