摘要翻译:
本文将二元Garnier方程组与四维二元偏微分系统作一比较,它们具有$w(d6^{(1)})$-对称性。这两个系统在变量$q_1,q_2$中的每一次紧致都是不同的,但在变量$p_1,p_2$中具有相同的五个全纯条件。
---
英文标题:
《Partial Differential system in two variables with
$W(D_6^{(1)})$-symmetry and the Garnier system in two variables》
---
作者:
Yusuke Sasano
---
最新提交年份:
2016
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Classical Analysis and ODEs 经典分析与颂歌
分类描述:Special functions, orthogonal polynomials, harmonic analysis, ODE's, differential relations, calculus of variations, approximations, expansions, asymptotics
特殊函数、正交多项式、调和分析、Ode、微分关系、变分法、逼近、展开、渐近
--
---
英文摘要:
In this note, we will compare the Garnier system in two variables with four-dimensional partial differential system in two variables with $W(D_6^{(1)})$-symmetry. Both systems are different in each compactification in the variables $q_1,q_2$, however, has same five holomorphy conditions in the variables $p_1,p_2$.
---
PDF链接:
https://arxiv.org/pdf/0710.4295