摘要翻译:
通过引入广义跃迁率,直接从主方程导出了一般类型的非线性Fokker-Planck方程。证明了在外势存在下,遵循这类非线性Fokker-Planck方程的系统的H定理。为此,提出了一个包含Fokker-Planck方程项和一般熵形式的关系式。结果表明,在平衡状态下,这种关系等价于最大熵原理。Fokker-Planck方程族可能与单一类型的熵有关,因此,本文探讨了著名的熵形式与其相关的Fokker-Planck方程之间的对应关系。结果表明,Boltzmann-Gibbs熵除与标准的线性Fokker-Planck方程有关外,还可能与一类非线性Fokker-Planck方程有关。
---
英文标题:
《Consequences of the H-Theorem from Nonlinear Fokker-Planck Equations》
---
作者:
Veit Schwammle, Fernando D. Nobre and Evaldo M. F. Curado
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
A general type of nonlinear Fokker-Planck equation is derived directly from a master equation, by introducing generalized transition rates. The H-theorem is demonstrated for systems that follow those classes of nonlinear Fokker-Planck equations, in the presence of an external potential. For that, a relation involving terms of Fokker-Planck equations and general entropic forms is proposed. It is shown that, at equilibrium, this relation is equivalent to the maximum-entropy principle. Families of Fokker-Planck equations may be related to a single type of entropy, and so, the correspondence between well-known entropic forms and their associated Fokker-Planck equations is explored. It is shown that the Boltzmann-Gibbs entropy, apart from its connection with the standard -- linear Fokker-Planck equation -- may be also related to a family of nonlinear Fokker-Planck equations.
---
PDF链接:
https://arxiv.org/pdf/707.3153