摘要翻译:
面部地标是指面部基本点在人脸图像上的定位。已经有大量的尝试从人脸图像中检测这些点,但是从来没有尝试合成一个随机的人脸并生成相应的人脸地标。本文提出了一种在潜在Z空间中扩充数据集的框架,并应用于从二维人脸数据集生成相应地标集的回归问题。BARID框架已经被用来训练一个来自CelebA数据库的人脸生成器。利用Adam优化器实现生成器的逆,生成对应于每个人脸图像的潜在向量,并训练轻量级深度
神经网络将潜在Z空间向量映射到地标空间。初步结果是有希望的,并提供了一个通用的方法,以增加注释图像数据集与额外的中间样本。
---
英文标题:
《Face Synthesis with Landmark Points from Generative Adversarial Networks
and Inverse Latent Space Mapping》
---
作者:
Shabab Bazrafkan, Hossein Javidnia, Peter Corcoran
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
Facial landmarks refer to the localization of fundamental facial points on face images. There have been a tremendous amount of attempts to detect these points from facial images however, there has never been an attempt to synthesize a random face and generate its corresponding facial landmarks. This paper presents a framework for augmenting a dataset in a latent Z-space and applied to the regression problem of generating a corresponding set of landmarks from a 2D facial dataset. The BEGAN framework has been used to train a face generator from CelebA database. The inverse of the generator is implemented using an Adam optimizer to generate the latent vector corresponding to each facial image, and a lightweight deep neural network is trained to map latent Z-space vectors to the landmark space. Initial results are promising and provide a generic methodology to augment annotated image datasets with additional intermediate samples.
---
PDF链接:
https://arxiv.org/pdf/1802.0039