全部版块 我的主页
论坛 经济学人 二区 外文文献专区
479 0
2022-03-08
摘要翻译:
超宽带技术在复杂的室内多径环境下提供高质量的位置估计方面显示出巨大的前景,但现有的超宽带系统在运行过程中需要几十到几百毫瓦的功率。后向散射通信已经证明了低功率标签的可行性,但迄今为止仅限于定位分辨率低的窄带系统。将这些互补技术结合起来的挑战是,它们都有一个复杂的限制,即受限的发射功率。法规将超宽带传输限制在-41.3dBm/MHz,反向散射设备只能反映其接收的功率。解决方案是长期集成这种有限的功率,将最初不易察觉的信号从噪声中消除。这种集成只在目标静止时工作。然而,静止描述了绝大多数物体,尤其是丢失的物体。基于这一见解,我们设计了一个亚微瓦、分米精度的定位系统,它在定位系统中开辟了一个新的折衷空间,并实现了一个能量、尺寸和成本点,邀请了所有东西的定位。为了评估这一概念,我们实现了一个能量收集的定位标签,发现定位可以在15分钟内跨越30米的空间恢复超宽带后向散射,定位标签的平均三维欧几里得误差仅为30厘米。
---
英文标题:
《Slocalization: Sub-{\mu}W Ultra Wideband Backscatter Localization》
---
作者:
Pat Pannuto, Benjamin Kempke, and Prabal Dutta
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Networking and Internet Architecture        网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Ultra wideband technology has shown great promise for providing high-quality location estimation, even in complex indoor multipath environments, but existing ultra wideband systems require tens to hundreds of milliwatts during operation. Backscatter communication has demonstrated the viability of astonishingly low-power tags, but has thus far been restricted to narrowband systems with low localization resolution. The challenge to combining these complimentary technologies is that they share a compounding limitation, constrained transmit power. Regulations limit ultra wideband transmissions to just -41.3 dBm/MHz, and a backscatter device can only reflect the power it receives. The solution is long-term integration of this limited power, lifting the initially imperceptible signal out of the noise. This integration only works while the target is stationary. However, stationary describes the vast majority of objects, especially lost ones. With this insight, we design Slocalization, a sub-microwatt, decimeter-accurate localization system that opens a new tradeoff space in localization systems and realizes an energy, size, and cost point that invites the localization of every thing. To evaluate this concept, we implement an energy-harvesting Slocalization tag and find that Slocalization can recover ultra wideband backscatter in under fifteen minutes across thirty meters of space and localize tags with a mean 3D Euclidean error of only 30 cm.
---
PDF链接:
https://arxiv.org/pdf/1802.0747
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群