摘要翻译:
在过去的几年里,在线社交网络的规模和范围都呈爆炸式增长。这些网络的空前增长给系统设计和维护带来了挑战。解决这一问题的一种方法是对如此大的网络进行分区,并将这些分区分配给不同的机器。然而,社会网络具有独特的性质,使得划分问题变得不简单。本文的主要贡献在于理解了社会网络的不同性质,以及这些性质如何指导划分算法的选择。首先,我们通过大规模的测量来表征社会网络的不同性质,然后定性地评估覆盖设计空间的不同划分方法。我们揭示了不同的权衡,并根据社交网络的属性来理解它们。我们表明,明智地选择分区方案有助于提高性能。
---
英文标题:
《Divide and Conquer: Partitioning Online Social Networks》
---
作者:
Josep M. Pujol, Vijay Erramilli and Pablo Rodriguez
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Networking and Internet Architecture 网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Distributed, Parallel, and Cluster Computing 分布式、并行和集群计算
分类描述:Covers fault-tolerance, distributed algorithms, stabilility, parallel computation, and cluster computing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7, E.1.
包括容错、分布式算法、稳定性、并行计算和集群计算。大致包括ACM学科类C.1.2、C.1.4、C.2.4、D.1.3、D.4.5、D.4.7、E.1中的材料。
--
---
英文摘要:
Online Social Networks (OSNs) have exploded in terms of scale and scope over the last few years. The unprecedented growth of these networks present challenges in terms of system design and maintenance. One way to cope with this is by partitioning such large networks and assigning these partitions to different machines. However, social networks possess unique properties that make the partitioning problem non-trivial. The main contribution of this paper is to understand different properties of social networks and how these properties can guide the choice of a partitioning algorithm. Using large scale measurements representing real OSNs, we first characterize different properties of social networks, and then we evaluate qualitatively different partitioning methods that cover the design space. We expose different trade-offs involved and understand them in light of properties of social networks. We show that a judicious choice of a partitioning scheme can help improve performance.
---
PDF链接:
https://arxiv.org/pdf/0905.4918